Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.

Identifieur interne : 000521 ( Main/Exploration ); précédent : 000520; suivant : 000522

Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.

Auteurs : Ahmet Kursat Azkur [Turquie] ; Mübeccel Akdis [Suisse] ; Dilek Azkur [Turquie] ; Milena Sokolowska [Suisse] ; Willem Van De Veen [Suisse] ; Marie-Charlotte Brüggen [Suisse] ; Liam O'Mahony [Irlande (pays)] ; Yadong Gao [République populaire de Chine] ; Kari Nadeau [États-Unis] ; Cezmi A. Akdis [Suisse]

Source :

RBID : pubmed:32396996

Descripteurs français

English descriptors

Abstract

As a zoonotic disease that has already spread globally to several million human beings and possibly to domestic and wild animals, eradication of coronavirus disease 2019 (COVID-19) appears practically impossible. There is a pressing need to improve our understanding of the immunology of this disease to contain the pandemic by developing vaccines and medicines for the prevention and treatment of patients. In this review, we aim to improve our understanding on the immune response and immunopathological changes in patients linked to deteriorating clinical conditions such as cytokine storm, acute respiratory distress syndrome, autopsy findings and changes in acute-phase reactants, and serum biochemistry in COVID-19. Similar to many other viral infections, asymptomatic disease is present in a significant but currently unknown fraction of the affected individuals. In the majority of the patients, a 1-week, self-limiting viral respiratory disease typically occurs, which ends with the development of neutralizing antiviral T cell and antibody immunity. The IgM-, IgA-, and IgG-type virus-specific antibodies levels are important measurements to predict population immunity against this disease and whether cross-reactivity with other coronaviruses is taking place. High viral load during the first infection and repeated exposure to virus especially in healthcare workers can be an important factor for severity of disease. It should be noted that many aspects of severe patients are unique to COVID-19 and are rarely observed in other respiratory viral infections, such as severe lymphopenia and eosinopenia, extensive pneumonia and lung tissue damage, a cytokine storm leading to acute respiratory distress syndrome, and multiorgan failure. Lymphopenia causes a defect in antiviral and immune regulatory immunity. At the same time, a cytokine storm starts with extensive activation of cytokine-secreting cells with innate and adaptive immune mechanisms both of which contribute to a poor prognosis. Elevated levels of acute-phase reactants and lymphopenia are early predictors of high disease severity. Prevention of development to severe disease, cytokine storm, acute respiratory distress syndrome, and novel approaches to prevent their development will be main routes for future research areas. As we learn to live amidst the virus, understanding the immunology of the disease can assist in containing the pandemic and in developing vaccines and medicines to prevent and treat individual patients.

DOI: 10.1111/all.14364
PubMed: 32396996
PubMed Central: PMC7272948


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.</title>
<author>
<name sortKey="Azkur, Ahmet Kursat" sort="Azkur, Ahmet Kursat" uniqKey="Azkur A" first="Ahmet Kursat" last="Azkur">Ahmet Kursat Azkur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale, Turkey.</nlm:affiliation>
<country xml:lang="fr">Turquie</country>
<wicri:regionArea>Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale</wicri:regionArea>
<wicri:noRegion>Kirikkale</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Akdis, Mubeccel" sort="Akdis, Mubeccel" uniqKey="Akdis M" first="Mübeccel" last="Akdis">Mübeccel Akdis</name>
<affiliation wicri:level="4">
<nlm:affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Azkur, Dilek" sort="Azkur, Dilek" uniqKey="Azkur D" first="Dilek" last="Azkur">Dilek Azkur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale, Turkey.</nlm:affiliation>
<country xml:lang="fr">Turquie</country>
<wicri:regionArea>Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale</wicri:regionArea>
<wicri:noRegion>Kirikkale</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sokolowska, Milena" sort="Sokolowska, Milena" uniqKey="Sokolowska M" first="Milena" last="Sokolowska">Milena Sokolowska</name>
<affiliation wicri:level="4">
<nlm:affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van De Veen, Willem" sort="Van De Veen, Willem" uniqKey="Van De Veen W" first="Willem" last="Van De Veen">Willem Van De Veen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bruggen, Marie Charlotte" sort="Bruggen, Marie Charlotte" uniqKey="Bruggen M" first="Marie-Charlotte" last="Brüggen">Marie-Charlotte Brüggen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Christine Kühne-Center for Allergy Research and Education, Davos</wicri:regionArea>
<wicri:noRegion>Davos</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Dermatology, University Hospital Zurich, Zurich</wicri:regionArea>
<wicri:noRegion>Zurich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Medicine, University Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Faculty of Medicine, University Zurich, Zurich</wicri:regionArea>
<wicri:noRegion>Zurich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Hochgebirgsklinik Davos, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Hochgebirgsklinik Davos, Davos</wicri:regionArea>
<wicri:noRegion>Davos</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="O Mahony, Liam" sort="O Mahony, Liam" uniqKey="O Mahony L" first="Liam" last="O'Mahony">Liam O'Mahony</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork</wicri:regionArea>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Yadong" sort="Gao, Yadong" uniqKey="Gao Y" first="Yadong" last="Gao">Yadong Gao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan</wicri:regionArea>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="région">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nadeau, Kari" sort="Nadeau, Kari" uniqKey="Nadeau K" first="Kari" last="Nadeau">Kari Nadeau</name>
<affiliation wicri:level="4">
<nlm:affiliation>Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Akdis, Cezmi A" sort="Akdis, Cezmi A" uniqKey="Akdis C" first="Cezmi A" last="Akdis">Cezmi A. Akdis</name>
<affiliation wicri:level="4">
<nlm:affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Christine Kühne-Center for Allergy Research and Education, Davos</wicri:regionArea>
<wicri:noRegion>Davos</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32396996</idno>
<idno type="pmid">32396996</idno>
<idno type="doi">10.1111/all.14364</idno>
<idno type="pmc">PMC7272948</idno>
<idno type="wicri:Area/Main/Corpus">000735</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000735</idno>
<idno type="wicri:Area/Main/Curation">000735</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000735</idno>
<idno type="wicri:Area/Main/Exploration">000735</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.</title>
<author>
<name sortKey="Azkur, Ahmet Kursat" sort="Azkur, Ahmet Kursat" uniqKey="Azkur A" first="Ahmet Kursat" last="Azkur">Ahmet Kursat Azkur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale, Turkey.</nlm:affiliation>
<country xml:lang="fr">Turquie</country>
<wicri:regionArea>Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale</wicri:regionArea>
<wicri:noRegion>Kirikkale</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Akdis, Mubeccel" sort="Akdis, Mubeccel" uniqKey="Akdis M" first="Mübeccel" last="Akdis">Mübeccel Akdis</name>
<affiliation wicri:level="4">
<nlm:affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Azkur, Dilek" sort="Azkur, Dilek" uniqKey="Azkur D" first="Dilek" last="Azkur">Dilek Azkur</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale, Turkey.</nlm:affiliation>
<country xml:lang="fr">Turquie</country>
<wicri:regionArea>Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale</wicri:regionArea>
<wicri:noRegion>Kirikkale</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sokolowska, Milena" sort="Sokolowska, Milena" uniqKey="Sokolowska M" first="Milena" last="Sokolowska">Milena Sokolowska</name>
<affiliation wicri:level="4">
<nlm:affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van De Veen, Willem" sort="Van De Veen, Willem" uniqKey="Van De Veen W" first="Willem" last="Van De Veen">Willem Van De Veen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bruggen, Marie Charlotte" sort="Bruggen, Marie Charlotte" uniqKey="Bruggen M" first="Marie-Charlotte" last="Brüggen">Marie-Charlotte Brüggen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Christine Kühne-Center for Allergy Research and Education, Davos</wicri:regionArea>
<wicri:noRegion>Davos</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Dermatology, University Hospital Zurich, Zurich</wicri:regionArea>
<wicri:noRegion>Zurich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Medicine, University Zurich, Zurich, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Faculty of Medicine, University Zurich, Zurich</wicri:regionArea>
<wicri:noRegion>Zurich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Hochgebirgsklinik Davos, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Hochgebirgsklinik Davos, Davos</wicri:regionArea>
<wicri:noRegion>Davos</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="O Mahony, Liam" sort="O Mahony, Liam" uniqKey="O Mahony L" first="Liam" last="O'Mahony">Liam O'Mahony</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork</wicri:regionArea>
<wicri:noRegion>Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, Yadong" sort="Gao, Yadong" uniqKey="Gao Y" first="Yadong" last="Gao">Yadong Gao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan</wicri:regionArea>
<placeName>
<settlement type="city">Wuhan</settlement>
<region type="région">Hubei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nadeau, Kari" sort="Nadeau, Kari" uniqKey="Nadeau K" first="Kari" last="Nadeau">Kari Nadeau</name>
<affiliation wicri:level="4">
<nlm:affiliation>Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Akdis, Cezmi A" sort="Akdis, Cezmi A" uniqKey="Akdis C" first="Cezmi A" last="Akdis">Cezmi A. Akdis</name>
<affiliation wicri:level="4">
<nlm:affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos</wicri:regionArea>
<orgName type="university">Université de Zurich</orgName>
<placeName>
<settlement type="city">Zurich</settlement>
<region nuts="3" type="region">Canton de Zurich</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Christine Kühne-Center for Allergy Research and Education, Davos</wicri:regionArea>
<wicri:noRegion>Davos</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Allergy</title>
<idno type="eISSN">1398-9995</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antibodies, Viral (immunology)</term>
<term>Betacoronavirus (chemistry)</term>
<term>Betacoronavirus (immunology)</term>
<term>COVID-19 (MeSH)</term>
<term>Coronavirus Infections (blood)</term>
<term>Coronavirus Infections (immunology)</term>
<term>Coronavirus Infections (virology)</term>
<term>Cytokines (immunology)</term>
<term>Eosinophils (immunology)</term>
<term>Epitopes, B-Lymphocyte (immunology)</term>
<term>Epitopes, T-Lymphocyte (immunology)</term>
<term>Humans (MeSH)</term>
<term>Immunity, Innate (MeSH)</term>
<term>Lymphocytes (immunology)</term>
<term>Lymphopenia (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (blood)</term>
<term>Pneumonia, Viral (immunology)</term>
<term>Pneumonia, Viral (virology)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Zoonoses (immunology)</term>
<term>Zoonoses (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Anticorps antiviraux (immunologie)</term>
<term>Betacoronavirus (composition chimique)</term>
<term>Betacoronavirus (immunologie)</term>
<term>Cytokines (immunologie)</term>
<term>Déterminants antigéniques des lymphocytes B (immunologie)</term>
<term>Déterminants antigéniques des lymphocytes T (immunologie)</term>
<term>Granulocytes éosinophiles (immunologie)</term>
<term>Humains (MeSH)</term>
<term>Immunité innée (MeSH)</term>
<term>Infections à coronavirus (immunologie)</term>
<term>Infections à coronavirus (sang)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Lymphocytes (immunologie)</term>
<term>Lymphopénie (MeSH)</term>
<term>Pandémies (MeSH)</term>
<term>Pneumopathie virale (immunologie)</term>
<term>Pneumopathie virale (sang)</term>
<term>Pneumopathie virale (virologie)</term>
<term>Zoonoses (immunologie)</term>
<term>Zoonoses (virologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antibodies, Viral</term>
<term>Cytokines</term>
<term>Epitopes, B-Lymphocyte</term>
<term>Epitopes, T-Lymphocyte</term>
</keywords>
<keywords scheme="MESH" qualifier="blood" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Anticorps antiviraux</term>
<term>Betacoronavirus</term>
<term>Cytokines</term>
<term>Déterminants antigéniques des lymphocytes B</term>
<term>Déterminants antigéniques des lymphocytes T</term>
<term>Granulocytes éosinophiles</term>
<term>Infections à coronavirus</term>
<term>Lymphocytes</term>
<term>Pneumopathie virale</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Betacoronavirus</term>
<term>Coronavirus Infections</term>
<term>Eosinophils</term>
<term>Lymphocytes</term>
<term>Pneumonia, Viral</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="sang" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>COVID-19</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Lymphopenia</term>
<term>Pandemics</term>
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Immunité innée</term>
<term>Lymphopénie</term>
<term>Pandémies</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As a zoonotic disease that has already spread globally to several million human beings and possibly to domestic and wild animals, eradication of coronavirus disease 2019 (COVID-19) appears practically impossible. There is a pressing need to improve our understanding of the immunology of this disease to contain the pandemic by developing vaccines and medicines for the prevention and treatment of patients. In this review, we aim to improve our understanding on the immune response and immunopathological changes in patients linked to deteriorating clinical conditions such as cytokine storm, acute respiratory distress syndrome, autopsy findings and changes in acute-phase reactants, and serum biochemistry in COVID-19. Similar to many other viral infections, asymptomatic disease is present in a significant but currently unknown fraction of the affected individuals. In the majority of the patients, a 1-week, self-limiting viral respiratory disease typically occurs, which ends with the development of neutralizing antiviral T cell and antibody immunity. The IgM-, IgA-, and IgG-type virus-specific antibodies levels are important measurements to predict population immunity against this disease and whether cross-reactivity with other coronaviruses is taking place. High viral load during the first infection and repeated exposure to virus especially in healthcare workers can be an important factor for severity of disease. It should be noted that many aspects of severe patients are unique to COVID-19 and are rarely observed in other respiratory viral infections, such as severe lymphopenia and eosinopenia, extensive pneumonia and lung tissue damage, a cytokine storm leading to acute respiratory distress syndrome, and multiorgan failure. Lymphopenia causes a defect in antiviral and immune regulatory immunity. At the same time, a cytokine storm starts with extensive activation of cytokine-secreting cells with innate and adaptive immune mechanisms both of which contribute to a poor prognosis. Elevated levels of acute-phase reactants and lymphopenia are early predictors of high disease severity. Prevention of development to severe disease, cytokine storm, acute respiratory distress syndrome, and novel approaches to prevent their development will be main routes for future research areas. As we learn to live amidst the virus, understanding the immunology of the disease can assist in containing the pandemic and in developing vaccines and medicines to prevent and treat individual patients.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32396996</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1398-9995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>75</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Allergy</Title>
<ISOAbbreviation>Allergy</ISOAbbreviation>
</Journal>
<ArticleTitle>Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.</ArticleTitle>
<Pagination>
<MedlinePgn>1564-1581</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/all.14364</ELocationID>
<Abstract>
<AbstractText>As a zoonotic disease that has already spread globally to several million human beings and possibly to domestic and wild animals, eradication of coronavirus disease 2019 (COVID-19) appears practically impossible. There is a pressing need to improve our understanding of the immunology of this disease to contain the pandemic by developing vaccines and medicines for the prevention and treatment of patients. In this review, we aim to improve our understanding on the immune response and immunopathological changes in patients linked to deteriorating clinical conditions such as cytokine storm, acute respiratory distress syndrome, autopsy findings and changes in acute-phase reactants, and serum biochemistry in COVID-19. Similar to many other viral infections, asymptomatic disease is present in a significant but currently unknown fraction of the affected individuals. In the majority of the patients, a 1-week, self-limiting viral respiratory disease typically occurs, which ends with the development of neutralizing antiviral T cell and antibody immunity. The IgM-, IgA-, and IgG-type virus-specific antibodies levels are important measurements to predict population immunity against this disease and whether cross-reactivity with other coronaviruses is taking place. High viral load during the first infection and repeated exposure to virus especially in healthcare workers can be an important factor for severity of disease. It should be noted that many aspects of severe patients are unique to COVID-19 and are rarely observed in other respiratory viral infections, such as severe lymphopenia and eosinopenia, extensive pneumonia and lung tissue damage, a cytokine storm leading to acute respiratory distress syndrome, and multiorgan failure. Lymphopenia causes a defect in antiviral and immune regulatory immunity. At the same time, a cytokine storm starts with extensive activation of cytokine-secreting cells with innate and adaptive immune mechanisms both of which contribute to a poor prognosis. Elevated levels of acute-phase reactants and lymphopenia are early predictors of high disease severity. Prevention of development to severe disease, cytokine storm, acute respiratory distress syndrome, and novel approaches to prevent their development will be main routes for future research areas. As we learn to live amidst the virus, understanding the immunology of the disease can assist in containing the pandemic and in developing vaccines and medicines to prevent and treat individual patients.</AbstractText>
<CopyrightInformation>© 2020 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Azkur</LastName>
<ForeName>Ahmet Kursat</ForeName>
<Initials>AK</Initials>
<Identifier Source="ORCID">0000-0002-5597-8917</Identifier>
<AffiliationInfo>
<Affiliation>Department of Virology, Faculty of Veterinary Medicine, University of Kirikkale, Kirikkale, Turkey.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Akdis</LastName>
<ForeName>Mübeccel</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-0554-9943</Identifier>
<AffiliationInfo>
<Affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Azkur</LastName>
<ForeName>Dilek</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-4396-9087</Identifier>
<AffiliationInfo>
<Affiliation>Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Kirikkale, Kirikkale, Turkey.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sokolowska</LastName>
<ForeName>Milena</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0001-9710-6685</Identifier>
<AffiliationInfo>
<Affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van de Veen</LastName>
<ForeName>Willem</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brüggen</LastName>
<ForeName>Marie-Charlotte</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Medicine, University Zurich, Zurich, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Hochgebirgsklinik Davos, Davos, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>O'Mahony</LastName>
<ForeName>Liam</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0003-4705-3583</Identifier>
<AffiliationInfo>
<Affiliation>Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Yadong</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0003-1251-7608</Identifier>
<AffiliationInfo>
<Affiliation>Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nadeau</LastName>
<ForeName>Kari</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0002-2146-2955</Identifier>
<AffiliationInfo>
<Affiliation>Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Akdis</LastName>
<ForeName>Cezmi A</ForeName>
<Initials>CA</Initials>
<Identifier Source="ORCID">0000-0001-8020-019X</Identifier>
<AffiliationInfo>
<Affiliation>Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Denmark</Country>
<MedlineTA>Allergy</MedlineTA>
<NlmUniqueID>7804028</NlmUniqueID>
<ISSNLinking>0105-4538</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018985">Epitopes, B-Lymphocyte</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018984">Epitopes, T-Lymphocyte</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004804" MajorTopicYN="N">Eosinophils</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018985" MajorTopicYN="N">Epitopes, B-Lymphocyte</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018984" MajorTopicYN="N">Epitopes, T-Lymphocyte</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="Y">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008214" MajorTopicYN="N">Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008231" MajorTopicYN="N">Lymphopenia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015047" MajorTopicYN="N">Zoonoses</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">cytokine storm</Keyword>
<Keyword MajorTopicYN="Y">immune response</Keyword>
<Keyword MajorTopicYN="Y">immunologic tests</Keyword>
<Keyword MajorTopicYN="Y">immunopathology</Keyword>
<Keyword MajorTopicYN="Y">infections</Keyword>
<Keyword MajorTopicYN="Y">pandemic</Keyword>
<Keyword MajorTopicYN="Y">virus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32396996</ArticleId>
<ArticleId IdType="doi">10.1111/all.14364</ArticleId>
<ArticleId IdType="pmc">PMC7272948</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Coronaviridae Study Group of the International Committee on Taxonomy of V. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-544.</Citation>
</Reference>
<Reference>
<Citation>To KK, Hung IF, Chan JF, Yuen KY. From SARS coronavirus to novel animal and human coronaviruses. J Thorac Dis. 2013;5(Suppl 2):S103-108.</Citation>
</Reference>
<Reference>
<Citation>Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814-1820.</Citation>
</Reference>
<Reference>
<Citation>Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733.</Citation>
</Reference>
<Reference>
<Citation>WHO. Coronavirus disease (COVID-2019) situation reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed April 9</Citation>
</Reference>
<Reference>
<Citation>Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA 2020;117(17):9241-9243.</Citation>
</Reference>
<Reference>
<Citation>Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med. 2020.</Citation>
</Reference>
<Reference>
<Citation>Dong X, Cao YY, Lu XX, et al. Eleven faces of coronavirus disease 2019. Allergy 2020;75:1699-1709.</Citation>
</Reference>
<Reference>
<Citation>Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med. 2020.</Citation>
</Reference>
<Reference>
<Citation>Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323(14):1406.</Citation>
</Reference>
<Reference>
<Citation>https://www.worldometers.info/coronavirus/</Citation>
</Reference>
<Reference>
<Citation>Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020.</Citation>
</Reference>
<Reference>
<Citation>Paules CI, Marston HD, Fauci AS. Coronavirus infections-more than just the common cold. JAMA. 2020;323(8):707.</Citation>
</Reference>
<Reference>
<Citation>Hindson J. COVID-19: faecal-oral transmission? Nat Rev Gastroenterol Hepatol. 2020;17(5):259-259.</Citation>
</Reference>
<Reference>
<Citation>Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75:1730-1741.</Citation>
</Reference>
<Reference>
<Citation>Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273.</Citation>
</Reference>
<Reference>
<Citation>Kim YI, Kim SG, Kim SM, et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 2020;27(5):704-709.</Citation>
</Reference>
<Reference>
<Citation>Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280. e278.</Citation>
</Reference>
<Reference>
<Citation>Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 2020.</Citation>
</Reference>
<Reference>
<Citation>Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620.</Citation>
</Reference>
<Reference>
<Citation>Stertz S, Reichelt M, Spiegel M, et al. The intracellular sites of early replication and budding of SARS-coronavirus. Virology. 2007;361(2):304-315.</Citation>
</Reference>
<Reference>
<Citation>Siu KL, Kok KH, Ng MH, et al. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J Biol Chem. 2009;284(24):16202-16209.</Citation>
</Reference>
<Reference>
<Citation>Ozdemir C, Kucuksezer UC, Tamay Z. Is BCG vaccination effecting the spread and severity of COVID-19. Allergy 2020;75:1815-1819.</Citation>
</Reference>
<Reference>
<Citation>Gursel M, Gursel I. Is global BCG vaccination-induced trained immunity relevant to the progression of the SARS.CoV-2 pandemic? Allergy. 2020;75:1815-1819.</Citation>
</Reference>
<Reference>
<Citation>Deftereos SG, Siasos G, Giannopoulos G, et al. The Greek study in the effects of colchicine in COvid-19 complications prevention (GRECCO-19 study): Rationale and study design. Hellenic J Cardiol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Shneider A, Kudriavtsev A, Vakhrusheva A. Can melatonin reduce the severity of COVID-19 pandemic? Int Rev Immunol. 2020;1-10.</Citation>
</Reference>
<Reference>
<Citation>Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV- 2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2).</Citation>
</Reference>
<Reference>
<Citation>Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020.</Citation>
</Reference>
<Reference>
<Citation>Dai W, Zhang B, Su H, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020.</Citation>
</Reference>
<Reference>
<Citation>Wang X, Xu W, Hu G, et al. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol 2020.</Citation>
</Reference>
<Reference>
<Citation>Xiong L, Edwards CK 3rd, Zhou L. The biological function and clinical utilization of CD147 in human diseases: a review of the current scientific literature. Int J Mol Sci. 2014;15(10):17411-17441.</Citation>
</Reference>
<Reference>
<Citation>Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep. 2020.</Citation>
</Reference>
<Reference>
<Citation>Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol. 2019;119:44-52.</Citation>
</Reference>
<Reference>
<Citation>Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020.</Citation>
</Reference>
<Reference>
<Citation>Karamloo F, König R. SARS-CoV-2 immunogenecity at the crossroads. Allergy. 2020;75:1822-1824.</Citation>
</Reference>
<Reference>
<Citation>Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe. 2020;27(4):671-680.</Citation>
</Reference>
<Reference>
<Citation>Ng OW, Chia A, Tan AT, et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016;34(17):2008-2014.</Citation>
</Reference>
<Reference>
<Citation>Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS- CoV immunological studies. Viruses. 2020;12(3):254.</Citation>
</Reference>
<Reference>
<Citation>Herbinger KH, Hanus I, Beissner M, et al. Lymphocytosis and lymphopenia induced by imported infectious diseases: a controlled cross-sectional study of 17,229 diseased German travelers returning from the tropics and subtropics. Am J Trop Med Hyg. 2016;94(6):1385-1391.</Citation>
</Reference>
<Reference>
<Citation>Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020.</Citation>
</Reference>
<Reference>
<Citation>Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422.</Citation>
</Reference>
<Reference>
<Citation>Wang F, Nie J, Wang H, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 2020;221(11):1762-1769.</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364-374.</Citation>
</Reference>
<Reference>
<Citation>Sun D, Li H, Lu XX, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center's observational study. World J Pediatr. 2020.</Citation>
</Reference>
<Reference>
<Citation>Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.</Citation>
</Reference>
<Reference>
<Citation>Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061.</Citation>
</Reference>
<Reference>
<Citation>Bermejo-Martin JF, Almansa R, Menendez R, Mendez R, Kelvin DJ, Torres A. Lymphopenic community acquired pneumonia as signature of severe COVID-19 infection. J Infect. 2020;80(5):e23-e24.</Citation>
</Reference>
<Reference>
<Citation>Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5:33.</Citation>
</Reference>
<Reference>
<Citation>Zhang HP, Sun YX, Lin Z, et al. CARsomes inhibit airway allergic inflammation in mice by inducing antigen-specific Th2 cell apoptosis. Allergy. 2020 75(5):1205-1216.</Citation>
</Reference>
<Reference>
<Citation>Aksoy E, Azkur AK. Schmallenberg virus induces apoptosis in Vero cell line via extrinsic and intrinsic pathways in a time and dose dependent manner. J Vet Med Sci. 2019;81(2):204-212.</Citation>
</Reference>
<Reference>
<Citation>Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect. 2020;9(1):558-570.</Citation>
</Reference>
<Reference>
<Citation>Chen RF, Chang JC, Yeh WT, et al. Role of vascular cell adhesion molecules and leukocyte apoptosis in the lymphopenia and thrombocytopenia of patients with severe acute respiratory syndrome (SARS). Microbes Infect. 2006;8(1):122-127.</Citation>
</Reference>
<Reference>
<Citation>Qu R, Ling Y, Zhang YH, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with Corona Virus Disease-19. J Med Virol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Palomares O, Akdis M, Martin-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev. 2017;278(1):219-236.</Citation>
</Reference>
<Reference>
<Citation>Akdis CA, Akdis M. Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J Allergy Clin Immunol. 2009;123(4):735-746. quiz 747-738.</Citation>
</Reference>
<Reference>
<Citation>Suvas S, Azkur AK, Kim BS, Kumaraguru U, Rouse BT. CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol. 2004;172(7):4123-4132.</Citation>
</Reference>
<Reference>
<Citation>Lan F, Zhang N, Bachert C, Zhang L. Stability of regulatory T cells in T helper 2-biased allergic airway diseases. Allergy. 2020;10.1111/all.14257</Citation>
</Reference>
<Reference>
<Citation>Loebbermann J, Durant L, Thornton H, Johansson C, Openshaw PJ. Defective immunoregulation in RSV vaccine-augmented viral lung disease restored by selective chemoattraction of regulatory T cells. Proc Natl Acad Sci USA. 2013;110(8):2987-2992.</Citation>
</Reference>
<Reference>
<Citation>Lanteri MC, O'Brien KM, Purtha WE, et al. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest. 2009;119(11):3266-3277.</Citation>
</Reference>
<Reference>
<Citation>Flores-Torres AS, Salinas-Carmona MC, Salinas E, Rosas-Taraco AG. Eosinophils and respiratory viruses. Viral Immunol. 2019;32(5):198-207.</Citation>
</Reference>
<Reference>
<Citation>Jesenak M, Schwarze J. Lung eosinophils-A novel "virus sink" that is defective in asthma? Allergy. 2019;74(10):1832-1834.</Citation>
</Reference>
<Reference>
<Citation>Li YX, Wu W, Yang T, et al. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19. Zhonghua Nei Ke Za Zhi. 2020;59:E003.</Citation>
</Reference>
<Reference>
<Citation>Du Y, Tu L, Zhu P, et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan: A retrospective observational study. Am J Respir Crit Care Med. 2020.</Citation>
</Reference>
<Reference>
<Citation>Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID-19 infections and Coronavirus vaccination. J Allergy Clin Immunol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153(6):725-733.</Citation>
</Reference>
<Reference>
<Citation>Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533-535.</Citation>
</Reference>
<Reference>
<Citation>Retamal-Diaz A, Covian C, Pacheco GA, et al. Contribution of resident memory CD8(+) T cells to protective immunity against respiratory syncytial virus and their impact on vaccine design. Pathogens. 2019;8(3):147.</Citation>
</Reference>
<Reference>
<Citation>Schmidt ME, Varga SM. The CD8 T cell response to respiratory virus infections. Front Immunol. 2018;9:678.</Citation>
</Reference>
<Reference>
<Citation>Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-543.</Citation>
</Reference>
<Reference>
<Citation>Casadevall A, Pirofski LA. The convalescent sera option for containing COVID-19. J Clin Invest. 2020;130(4):1545-1548.</Citation>
</Reference>
<Reference>
<Citation>Cunningham AC, Goh HP, Koh D. Treatment of COVID-19: old tricks for new challenges. Crit Care. 2020;24(1):91.</Citation>
</Reference>
<Reference>
<Citation>van de Veen W, Akdis M. Tolerance mechanisms of AIT. Allergy. 2020;75:1071-1018.</Citation>
</Reference>
<Reference>
<Citation>Lee YL, Liao CH, Liu PY, et al. Dynamics of anti-SARS-Cov-2 IgM and IgG antibodies among COVID-19 patients. J Infect. 2020.</Citation>
</Reference>
<Reference>
<Citation>To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV- 2: an observational cohort study. Lancet Infect Dis. 2020.</Citation>
</Reference>
<Reference>
<Citation>Renegar KB, Small PA Jr, Boykins LG, Wright PF. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J Immunol. 2004;173(3):1978-1986.</Citation>
</Reference>
<Reference>
<Citation>Liew FY, Russell SM, Appleyard G, Brand CM, Beale J. Cross-protection in mice infected with influenza A virus by the respiratory route is correlated with local IgA antibody rather than serum antibody or cytotoxic T cell reactivity. Eur J Immunol. 1984;14(4):350-356.</Citation>
</Reference>
<Reference>
<Citation>Tamura S, Funato H, Hirabayashi Y, et al. Functional role of respiratory tract haemagglutinin-specific IgA antibodies in protection against influenza. Vaccine. 1990;8(5):479-485.</Citation>
</Reference>
<Reference>
<Citation>Takase H, Murakami Y, Endo A, Ikeuchi T. Antibody responses and protection in mice immunized orally against influenza virus. Vaccine. 1996;14(17-18):1651-1656.</Citation>
</Reference>
<Reference>
<Citation>Chen KS, Quinnan GV Jr. Secretory immunoglobulin A antibody response is conserved in aged mice following oral immunization with influenza virus vaccine. J Gen Virol. 1989;70(Pt 12):3291-3296.</Citation>
</Reference>
<Reference>
<Citation>Kim MH, Kim HJ, Chang J. Superior immune responses induced by intranasal immunization with recombinant adenovirus-based vaccine expressing full-length Spike protein of Middle East respiratory syndrome coronavirus. PLoS One. 2019;14(7):e0220196.</Citation>
</Reference>
<Reference>
<Citation>See RH, Zakhartchouk AN, Petric M, et al. Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. J Gen Virol. 2006;87(Pt 3):641-650.</Citation>
</Reference>
<Reference>
<Citation>Zheng BJ, Du LY, Zhao GY, et al. Studies of SARS virus vaccines. Hong Kong Med J. 2008;14(Suppl 4):39-43.</Citation>
</Reference>
<Reference>
<Citation>Okba NMA, Muller MA, Li W, et al. Severe acute respiratory syndrome Coronavirus 2−specific antibody responses in Coronavirus disease 2019 patients. Emerg Infect Dis. 2020;26(7).</Citation>
</Reference>
<Reference>
<Citation>Guo L, Ren L, Yang S, et al. Profiling early humoral response to diagnose novel Coronavirus disease (COVID-19). Clin Infect Dis. 2020.</Citation>
</Reference>
<Reference>
<Citation>Perez L. Acute phase protein response to viral infection and vaccination. Arch Biochem Biophys. 2019;671:196-202.</Citation>
</Reference>
<Reference>
<Citation>Herbinger KH, Hanus I, Schunk M, et al. Elevated Values of C-reactive protein induced by imported infectious diseases: a controlled cross-sectional study of 11,079 diseased german travelers returning from the tropics and subtropics. Am J Trop Med Hyg. 2016;95(4):938-944.</Citation>
</Reference>
<Reference>
<Citation>Wang JT, Sheng WH, Fang CT, et al. Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg Infect Dis. 2004;10(5):818-824.</Citation>
</Reference>
<Reference>
<Citation>Ko JH, Park GE, Lee JY, et al. Predictive factors for pneumonia development and progression to respiratory failure in MERS-CoV infected patients. J Infect. 2016;73(5):468-475.</Citation>
</Reference>
<Reference>
<Citation>Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727-732.</Citation>
</Reference>
<Reference>
<Citation>Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062.</Citation>
</Reference>
<Reference>
<Citation>Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID-19 patients in Northeast Chongqing. J Med Virol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091.</Citation>
</Reference>
<Reference>
<Citation>Favaloro EJ, Lippi G. Recommendations for minimal laboratory testing panels in patients with COVID-19: potential for prognostic monitoring. Semin Thromb Hemost. 2020;46(03):379-382.</Citation>
</Reference>
<Reference>
<Citation>Behrens EM, Koretzky GA. Review: cytokine storm syndrome: looking toward the precision medicine Era. Arthritis Rheumatol. 2017;69(6):1135-1143.</Citation>
</Reference>
<Reference>
<Citation>Huang KJ, Su IJ, Theron M, et al. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol. 2005;75(2):185-194.</Citation>
</Reference>
<Reference>
<Citation>Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-539.</Citation>
</Reference>
<Reference>
<Citation>Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;13(1):3-10.</Citation>
</Reference>
<Reference>
<Citation>Younan P, Iampietro M, Nishida A, et al. Ebola virus binding to Tim-1 on T lymphocytes induces a cytokine storm. MBio 2017;8(5).</Citation>
</Reference>
<Reference>
<Citation>Eastwood D, Bird C, Dilger P, et al. Severity of the TGN1412 trial disaster cytokine storm correlated with IL-2 release. Br J Clin Pharmacol. 2013;76(2):299-315.</Citation>
</Reference>
<Reference>
<Citation>Simon-Loriere E, Lin RJ, Kalayanarooj SM, et al. High anti-dengue virus activity of the OAS gene family is associated with increased severity of dengue. J Infect Dis. 2015;212(12):2011-2020.</Citation>
</Reference>
<Reference>
<Citation>Savarin C, Bergmann CC. Fine tuning the cytokine storm by IFN and IL-10 following neurotropic coronavirus encephalomyelitis. Front Immunol. 2018;9:3022.</Citation>
</Reference>
<Reference>
<Citation>Dennis EA, Norris PC. Eicosanoid storm in infection and inflammation. Nat Rev Immunol. 2015;15(8):511-523.</Citation>
</Reference>
<Reference>
<Citation>Tam VC, Quehenberger O, Oshansky CM, et al. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell. 2013;154(1):213-227.</Citation>
</Reference>
<Reference>
<Citation>Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517-528.</Citation>
</Reference>
<Reference>
<Citation>Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):761-770.</Citation>
</Reference>
<Reference>
<Citation>Li Y, Chen M, Cao H, Zhu Y, Zheng J, Zhou H. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response. Microbes Infect. 2013;15(2):88-95.</Citation>
</Reference>
<Reference>
<Citation>Wang R, Xiao H, Guo R, Li Y, Shen B. The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infect. 2015;4(5):e28.</Citation>
</Reference>
<Reference>
<Citation>Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020.</Citation>
</Reference>
<Reference>
<Citation>Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9.</Citation>
</Reference>
<Reference>
<Citation>Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698-710.</Citation>
</Reference>
<Reference>
<Citation>Peiris JS, Chu CM, Cheng VC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361(9371):1767-1772.</Citation>
</Reference>
<Reference>
<Citation>Arentz M, Yim E, Klaff L, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323(16):1612.</Citation>
</Reference>
<Reference>
<Citation>Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513.</Citation>
</Reference>
<Reference>
<Citation>Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-481.</Citation>
</Reference>
<Reference>
<Citation>Sun P, Qie S, Liu Z, Ren J, Li K, Xi J. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: A single arm meta-analysis. J Med Virol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Wujtewicz M, Dylczyk-Sommer A, Aszkielowicz A, Zdanowski S, Piwowarczyk S, Owczuk R. COVID-19 - what should anaethesiologists and intensivists know about it? Anaesthesiol Intensive Ther. 2020;52(1):34-41.</Citation>
</Reference>
<Reference>
<Citation>Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with Coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020.</Citation>
</Reference>
<Reference>
<Citation>Shaver CM, Upchurch CP, Janz DR, et al. Cell-free hemoglobin: a novel mediator of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2016;310(6):L532-541.</Citation>
</Reference>
<Reference>
<Citation>Gonzales JN, Lucas R, Verin AD. The acute respiratory distress syndrome: mechanisms and perspective therapeutic approaches. Austin J Vasc Med. 2015;2(1).</Citation>
</Reference>
<Reference>
<Citation>Poston JT, Patel BK, Davis AM. Management of critically ill adults with COVID-19. JAMA. 2020.</Citation>
</Reference>
<Reference>
<Citation>Matthay MA, Aldrich JM, Gotts JE. Treatment for severe acute respiratory distress syndrome from COVID-19. Lancet Respir Med. 2020;8(5):433-434.</Citation>
</Reference>
<Reference>
<Citation>Shen C, Wang Z, Zhao F, et al. Treatment of 5 s COVID-19 with convalescent plasma. JAMA. 2020;323(16):1582.</Citation>
</Reference>
<Reference>
<Citation>Hartmann EK, Boehme S, Duenges B, et al. An inhaled tumor necrosis factor-alpha-derived TIP peptide improves the pulmonary function in experimental lung injury. Acta Anaesthesiol Scand. 2013;57(3):334-341.</Citation>
</Reference>
<Reference>
<Citation>Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200(3):282-289.</Citation>
</Reference>
<Reference>
<Citation>Ng DL, Al Hosani F, Keating MK, et al. Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of middle east respiratory syndrome Coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol. 2016;186(3):652-658.</Citation>
</Reference>
<Reference>
<Citation>Hanley B, Lucas SB, Youd E, Swift B, Osborn M. Autopsy in suspected COVID-19 cases. J Clin Pathol. 2020;73(5):239-242.</Citation>
</Reference>
<Reference>
<Citation>Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology of early-phase 2019 novel Coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020.</Citation>
</Reference>
<Reference>
<Citation>Zhang H, Zhou P, Wei Y, et al. Histopathologic Changes and SARS-CoV-2 Immunostaining in the Lung of a Patient With COVID-19. Ann Intern Med 2020.</Citation>
</Reference>
<Reference>
<Citation>Li X, Wang L, Yan S, et al. Clinical characteristics of 25 death cases with COVID-19: a retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis. 2020.</Citation>
</Reference>
<Reference>
<Citation>Zhang Y, Zheng L, Liu L, Zhao M, Xiao J, Zhao Q. Liver impairment in COVID-19 patients: a retrospective analysis of 115 cases from a single center in Wuhan city, China. Liver Int. 2020.</Citation>
</Reference>
<Reference>
<Citation>Deng Y, Liu W, Liu K, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chin Med J (Engl). 2020.</Citation>
</Reference>
<Reference>
<Citation>Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta. 2020;505:190-191.</Citation>
</Reference>
<Reference>
<Citation>Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020.</Citation>
</Reference>
<Reference>
<Citation>Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with Coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. 2020.</Citation>
</Reference>
<Reference>
<Citation>Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with Coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020;138(5):575.</Citation>
</Reference>
<Reference>
<Citation>Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr Pulmonol 2020;55(5):1169-1174.</Citation>
</Reference>
<Reference>
<Citation>Chen G, Wu D, Guo W, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020.</Citation>
</Reference>
<Reference>
<Citation>Zhang H, Chen Y, Yuan Q, et al. Identification of kidney transplant recipients with Coronavirus disease 2019. Eur Urol 2020.</Citation>
</Reference>
<Reference>
<Citation>Zheng F, Tang W, Li H, Huang YX, Xie YL, Zhou ZG. Clinical characteristics of 161 cases of corona virus disease 2019 (COVID-19) in Changsha. Eur Rev Med Pharmacol Sci. 2020;24(6):3404-3410.</Citation>
</Reference>
<Reference>
<Citation>Goh KJ, Choong MC, Cheong EH, et al. Rapid progression to acute respiratory distress syndrome: review of current understanding of critical illness from COVID-19 infection. Ann Acad Med Singapore. 2020;49(3):1-9.</Citation>
</Reference>
<Reference>
<Citation>Ji D, Zhang D, Xu J, et al. Prediction for progression risk in patients with COVID-19 pneumonia: the CALL score. Clin Infect Dis. 2020.</Citation>
</Reference>
<Reference>
<Citation>Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med 2020.</Citation>
</Reference>
<Reference>
<Citation>Ji HL, Zhao R, Matalon S, Matthay MA. Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility. Physiol Rev. 2020;100(3):1065-1075.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Irlande (pays)</li>
<li>République populaire de Chine</li>
<li>Suisse</li>
<li>Turquie</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Canton de Zurich</li>
<li>Hubei</li>
</region>
<settlement>
<li>Stanford (Californie)</li>
<li>Wuhan</li>
<li>Zurich</li>
</settlement>
<orgName>
<li>Université Stanford</li>
<li>Université de Zurich</li>
</orgName>
</list>
<tree>
<country name="Turquie">
<noRegion>
<name sortKey="Azkur, Ahmet Kursat" sort="Azkur, Ahmet Kursat" uniqKey="Azkur A" first="Ahmet Kursat" last="Azkur">Ahmet Kursat Azkur</name>
</noRegion>
<name sortKey="Azkur, Dilek" sort="Azkur, Dilek" uniqKey="Azkur D" first="Dilek" last="Azkur">Dilek Azkur</name>
</country>
<country name="Suisse">
<region name="Canton de Zurich">
<name sortKey="Akdis, Mubeccel" sort="Akdis, Mubeccel" uniqKey="Akdis M" first="Mübeccel" last="Akdis">Mübeccel Akdis</name>
</region>
<name sortKey="Akdis, Cezmi A" sort="Akdis, Cezmi A" uniqKey="Akdis C" first="Cezmi A" last="Akdis">Cezmi A. Akdis</name>
<name sortKey="Akdis, Cezmi A" sort="Akdis, Cezmi A" uniqKey="Akdis C" first="Cezmi A" last="Akdis">Cezmi A. Akdis</name>
<name sortKey="Bruggen, Marie Charlotte" sort="Bruggen, Marie Charlotte" uniqKey="Bruggen M" first="Marie-Charlotte" last="Brüggen">Marie-Charlotte Brüggen</name>
<name sortKey="Bruggen, Marie Charlotte" sort="Bruggen, Marie Charlotte" uniqKey="Bruggen M" first="Marie-Charlotte" last="Brüggen">Marie-Charlotte Brüggen</name>
<name sortKey="Bruggen, Marie Charlotte" sort="Bruggen, Marie Charlotte" uniqKey="Bruggen M" first="Marie-Charlotte" last="Brüggen">Marie-Charlotte Brüggen</name>
<name sortKey="Bruggen, Marie Charlotte" sort="Bruggen, Marie Charlotte" uniqKey="Bruggen M" first="Marie-Charlotte" last="Brüggen">Marie-Charlotte Brüggen</name>
<name sortKey="Sokolowska, Milena" sort="Sokolowska, Milena" uniqKey="Sokolowska M" first="Milena" last="Sokolowska">Milena Sokolowska</name>
<name sortKey="Van De Veen, Willem" sort="Van De Veen, Willem" uniqKey="Van De Veen W" first="Willem" last="Van De Veen">Willem Van De Veen</name>
</country>
<country name="Irlande (pays)">
<noRegion>
<name sortKey="O Mahony, Liam" sort="O Mahony, Liam" uniqKey="O Mahony L" first="Liam" last="O'Mahony">Liam O'Mahony</name>
</noRegion>
</country>
<country name="République populaire de Chine">
<region name="Hubei">
<name sortKey="Gao, Yadong" sort="Gao, Yadong" uniqKey="Gao Y" first="Yadong" last="Gao">Yadong Gao</name>
</region>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Nadeau, Kari" sort="Nadeau, Kari" uniqKey="Nadeau K" first="Kari" last="Nadeau">Kari Nadeau</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000521 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000521 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32396996
   |texte=   Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32396996" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021